Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent estimates for non-selfadjoint operators with double characteristics

We present recent progress in the understanding of the spectral and subelliptic properties of non-elliptic quadratic operators with application to the study of return to equilibrium for some systems of chains of oscillators. We then explain how these results allow to describe the spectral properties and to give sharp resolvent estimates for some classes of non-selfadjoint pseudodi erential oper...

متن کامل

Inequalities for the eigenvalues of non-selfadjoint Jacobi operators

We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.

متن کامل

Universal bounds and semiclassical estimates for eigenvalues

We prove trace inequalities for a self-adjoint operator on an abstract Hilbert space. These inequalities lead to universal bounds on spectral gaps and on moments of eigenvalues {λk} that are analogous to those known for Schrödinger operators and the Dirichlet Laplacian, on which the operators of interest are modeled. In addition we produce inequalities that are new even in the model case. These...

متن کامل

Spectral Estimates and Non-Selfadjoint Perturbations of Spheroidal Wave Operators

We derive a spectral representation for the oblate spheroidal wave operator, which is holomorphic in the aspherical parameter Ω in a neighborhood of the real line. For real Ω, estimates are derived for all eigenvalue gaps uniformly in Ω. The proof of the gap estimates is based on detailed estimates for complex solutions of the Riccati equation. The spectral representation for complex Ω is deriv...

متن کامل

Spectral instability for non-selfadjoint operators∗

We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2013

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2782